Self-regulatory Fractional Fuzzy Control for Dynamic Systems: An Analytical Approach

نویسندگان

چکیده

Abstract This paper presents an analytical design of a fractional order fuzzy proportional integral plus derivative (FOFPI + D) controller. Artificial intelligence is incorporated into the controller with help formula-based logic system. The designed scheme combines PI (FOFPI) and D (FOFD) controller, derived from fundamental FOPID control law. proposed enjoys linear structure controllers non-linear gains that provide self-tuning capability. sufficient condition for stability closed-loop system also established using graphical approach. Performance FOFPI D, its integer variant (FPI D), conventional examined highly uncertain two-link robotic manipulator optimum parameters are found by minimising aggregated variation error objective through non-dominated sorting genetic algorithm-II (NSGA-II). comparison trajectory tracking shows has minimum absolute (IAE) compared to other controllers. Further, rigorous performance investigations performed verify robustness against parametric uncertainties, varying boundary conditions reference disturbance rejection. It concluded results exhibits superior performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Dynamic Control Method for an Isolated Intersection Using Fuzzy Systems

Traffic flow systems are nonlinear and uncertain, so it is very difficult to find their optimal points. In traditional traffic control systems, the traffic lights of crossings change in a fixed time period that is not optimal. On the other hand, most proposed systems are sufficiently capable of coping with the uncertainties of traffic flow. To solve this problem, there is a need to develop expe...

متن کامل

An Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives

This paper presents an analytical technique for the analysis of a stochastic dynamic system whose damping behavior is described by a fractional derivative of order 1/2. In this approach, an eigenvector expansion method proposed by Suarez and Shokooh is used to obtain the response of the system. The properties of Laplace transforms of convolution integrals are used to write a set of general Duha...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

Adaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems

Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...

متن کامل

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Fuzzy Systems

سال: 2022

ISSN: ['2199-3211', '1562-2479']

DOI: https://doi.org/10.1007/s40815-022-01411-y